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Noise is one of the biggest enemies of quantum computers.

Quantum error correction protects quantum information from noise, where
logical qubits are encoded in a large number of physical qubits.
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Quantum error correction (QEC):
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Eastin-Knill Theorem

For any quantum code that corrects local errors, the set
of transversal logical gates is not universal.

• A noise 𝒩 = ∑!𝐾! ⋅ 𝐾!
" is correctable, if and only if

𝑃𝐾!
"𝐾#𝑃 ∝ 𝑃 where 𝑃 is the code projector.

• An error-correcting code corrects all local errors, then
𝑃𝐸𝑃 ∝ 𝑃 for local operators 𝐸.

• 𝑒$!%& , for any local 𝐻 acts as the identity in the
code subspace.

• The connected component of the identity in the group
of transversal logical gates acts as the identity.
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[Eastin & Knill 09]

[Bennett et al. 96, Knill & Laflamme 97]
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[Eastin & Knill 09]

[Bennett et al. 96, Knill & Laflamme 97]
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Quantum error correction with symmetries
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QEC vs. Continuous symmetries

When 𝐻% ∈ span{𝐾&
'𝐾(}, 𝐻) acts as the identity. 

(the Hamiltonian-in-Kraus-Span (HKS) condition)
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U(1) covariance

𝓤𝑺,𝜽 ℰ$←&

𝓤𝑳,𝜽ℰ$←&

=
𝒆*𝒊𝑯𝑳𝜽

𝒆*𝒊𝑯𝑺𝜽

QEC

ℛ&←$ 𝓝𝑺 ℰ$←&

𝕀&

=

𝑲𝒊 𝒊

QEC condition: 
𝑃𝐾!

"𝐾#𝑃 ∝ 𝑃, ∀𝑖, 𝑗

___________
Charge



Approximate QEC vs. Approximate symmetries

𝜖: Distance measure between ℛ)←%∘ 𝒩% ∘ ℰ%←) and 𝕀)
𝛿: Distance measure between 𝒰%,0 ∘ ℰ%←) and ℰ%←)∘ 𝒰),0
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Approximate QEC

ℛ&←$ 𝓝𝑺 ℰ$←&

𝕀&

≈1

Approximate U(1) covariance

𝓤𝑺,𝜽 ℰ$←&

𝓤𝑳,𝜽ℰ$←&

≈2

𝜖: Purified distance (Minimize over ℛ)

3 types of 𝛿: Global covariance (Maximize over 𝜃); Local covariance (Derivative w.r.t. 𝜃); Charge conservation



• Various trade-off relations between QEC and covariance.

• Code examples that nearly attain the bounds.
Exactly Covariant Codes:
• Lower bounds on the QEC inaccuracy 𝜖 when 𝛿 = 0.
• Connection to quantum metrology & quantum resource theory.

Main results
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?
𝝐 𝜹…𝜹 ≳

Δ𝐻) − 2𝝐𝔍(𝒩%, 𝐻%)
Δ𝐻%

, 𝝐 + 𝜹 ≳
Δ𝐻)

4𝔉(𝒩%, 𝐻%)
,

: Strengths of Hamiltonians. 𝜆&'( 𝐻 − 𝜆&)*(𝐻). 
: Related to the HKS condition. : Regularized QFI of 𝒩! ∘ 𝒰!,%

[Faist et al. PRX’20]
[Woods & Alhambra, Quantum’20]

[Kubica & Demkowicz-Dobrzański, PRL’20] 
[SZ et al. Quantum’21]

[Yang et al. PRR’22]



Behavior of the trade-off relations

For sufficiently small 𝛿,

𝜖 = Ω ,
-

For sufficiently small 𝜖,

𝛿 = Ω ,
-

𝛿 = Ω ,
-
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𝛿 ≳
Δ𝐻! − 2𝜖𝔍(𝒩", 𝐻")

Δ𝐻"
𝜖 + 𝛿 ≳

Δ𝐻!
4𝔉(𝒩", 𝐻")

Random local noise: 

𝒩',& = ∑)*+, +
,
𝒩',,&

𝑆?

𝐿
𝑆@

𝑆A

…
𝑶(𝒏)

𝑶(𝒏) 𝑶(𝒏𝟐)

Noise acts on one subsystem chosen uniformly at random. 

𝑒*&C#0

𝑒*&C$%0

𝑒*&C$&0



Behavior of the trade-off relations

For sufficiently small 𝛿,

𝜖 = Ω ,
-

𝜖 = Ω ,
-

For sufficiently small 𝜖,

𝛿 = Ω ,
-
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𝛿 ≳
Δ𝐻! − 2𝜖𝔍(𝒩", 𝐻")

Δ𝐻"
𝜖 + 𝛿 ≳

Δ𝐻!
4𝔉(𝒩", 𝐻")

I.I.D. noise: 

𝒩',& = ⨂)*+
, 𝒩',,&

𝑆?

𝐿
𝑆@

𝑆A

…
𝑶(𝒏)

𝑶(𝒏) 𝑶(𝒏)

-
Noise acts on every subsystem with a fixed probability. 

𝑒*&C#0

𝑒*&C$%0

𝑒*&C$&0



𝛿 = Ω 1/ 𝑛

Limitation on transversal logical gates
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𝑆? 𝐿𝑆@ 𝑆A…

= exp
−𝑖2𝜋𝐻&

𝐷exp
−𝑖2𝜋𝐻$!

𝐷
⊗ exp

−𝑖2𝜋𝐻$"
𝐷

…

≈2 exp 𝑖𝜃𝐻)exp 𝑖𝜃𝐻%% ⊗ exp 𝑖𝜃𝐻%%…

𝛿 ⋅ 𝐷 = 𝑂 𝑛 ,

𝐷 = 𝑂(𝑛D/@). 

Consider a QEC code that corrects local errors and admits a transversal
implementation 𝑉' = ⨂)*+

, 𝑒$!-.%-,/0 of the logical gate 𝑉1 = 𝑒$!-.%./0, where 𝐷 is
an integer, and 𝐻1,' have integer eigenvalues and have constant scalings.

𝑆@



𝛿 = Ω 1/ 𝑛

Limitation on transversal logical gates
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𝑆? 𝐿𝑆@ 𝑆A…

= exp
−𝑖2𝜋𝐻&

𝐷exp
−𝑖2𝜋𝐻$!

𝐷
⊗ exp

−𝑖2𝜋𝐻$"
𝐷

…

≈2 exp 𝑖𝜃𝐻)exp 𝑖𝜃𝐻%% ⊗ exp 𝑖𝜃𝐻%%…

𝛿 ⋅ 𝐷 = 𝑂 𝑛 ,

𝐷 = 𝑂(𝑛D/@). 

Consider a QEC code that corrects local errors and admits a transversal
implementation 𝑉' = ⨂)*+

, 𝑒$!-.%-,/0 of the logical gate 𝑉1 = 𝑒$!-.%./0, where 𝐷 is
an integer, and 𝐻1,' have integer eigenvalues and have constant scalings.

𝑆@
The 𝑂 log 𝑛 -th level Clifford 
hierarchy for stabilizer codes 



Example: Quantum Reed-Muller code

Consider the [[𝑛 = 22 − 1,1,3]] quantum Reed-Muller code:

𝔠3 = +

-/
∑
𝐱∈ 67 +,2 𝐱 ,    𝔠+ = +

-/
∑
𝐱∈ 67 +,2 𝟏 + 𝐱 .

The code is exactly error-correcting against single-qubit 
errors, and is approximately covariant: 

𝜖 = 0, 𝛿 ≈
2
𝑛
≳

1
𝑛
.
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𝔠0

𝔠1 = 𝑋⊗3 𝔠0
𝑡 = 3

𝑆? 𝐿𝑆@ 𝑆A…

= exp
−𝑖𝜋𝑍"
2451exp

𝑖𝜋𝑍!!
2451

exp
𝑖𝜋𝑍!#
2451

…



Example: Modified thermodynamic code

Consider a spin chain where the total charge 𝐻% = −∑PQ?A 𝑍%'.

𝔠R
S ∝ 𝑛 𝑚 TUVWX + 𝑞𝑚 −𝑛 TUVWX,     𝔠?

S ∝ 𝑛 −𝑚 TUVWX + 𝑞𝑚 𝑛 TUVWX. 
The code transits smoothly from an exactly covariant code to an exactly 
error-correcting code when 𝑞 increases from 0 to 1: 

𝜖 ≈
1 − 𝑞 𝑚
2𝑛

≳
1 − 4𝑞 𝑚
2𝑛

, 𝛿 ≈
4𝑞𝑚
𝑛

≳
𝑞𝑚
𝑛
.
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Parameter 𝑞 ∈ [0,1]
10

Exact QEC
𝜖 = 0

Exact covariance
𝛿 = 0 Thermodynamic code (𝑞 = 0),

𝑚 ()*+, ∝ ∑𝒋∈ /,0 ",1# 𝒋 23 𝒋 𝑗 . 

[Brandao et al. PRL’19, Faist et al. PRX’21]



Proof technique: Charge fluctuation
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Charge fluctuation 𝜒 ≔ 𝔠R 𝐻% 𝔠R − 𝔠? 𝐻% 𝔠? .
𝔠/ and 𝔠0 : codewords corresponding to the largest and smallest eigenvalues of 𝐻&.

When 𝜖 = 0, 𝜒 = 0 because 𝑃𝐻'𝑃 ∝ 𝑃 from HKS and QEC conditions;

When 𝛿 = 0, 𝜒 = Δ𝐻1 because 𝑊"𝐻'𝑊 = 𝐻1 − 𝜈𝕀1 (𝑊 is the encoding isometry). 

Charge fluctuation: 𝜒
Δ𝐻&0

Exact QEC
𝜖 = 0

Exact covariance
𝛿 = 0

[Faist et al. PRX’20]

𝛿 ≳
Δ𝐻) − 𝜒
Δ𝐻%

𝜒 ≤ 2𝜖𝔍𝛿 ≳
Δ𝐻) − 2𝜖𝔍

Δ𝐻%



Gate implementation

Proof technique: Gate implementation error

𝛾: Distance measure between ℛ)←%∘ 𝒩% ∘ 𝒰%,0∘ ℰ%←) and𝒰),0
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ℛ&←$ 𝓝𝑺 ℰ$←&

𝕀&

≈1

𝓤𝑺,𝜽 ℰ$←&

𝓤𝑳,𝜽ℰ$←&

≈2

ℛ&←$ 𝓝𝑺 ℰ$←&𝓤𝑺,𝜽 𝓤𝑳,𝜽≈Y

𝛿 + 𝜖 ≥ 𝛾

𝛿 + 𝜖 ≳
Δ𝐻)
4𝔉

𝛾 ≳
Δ𝐻)
4𝔉

QEC Covariance

𝔉 ≳
Δ𝐻& 4

4𝛾4



Summary and outlook

• Tradeoff relations between QEC and continuous symmetries.
• The relations are near-optimal in certain scenarios.

• Application in fault-tolerant quantum computation.

• Other tradeoff relations e.g., based on different symmetry measures;
Detailed proof techniques based on quantum metrology, quantum
resource theory, etc.

• Potential physical applications in quantum gravity (AdS/CFT, black hole
evaporation), many-body physics, etc.
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