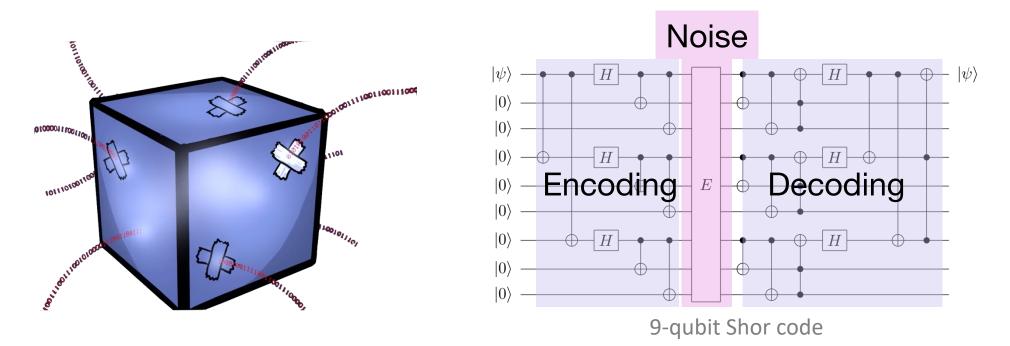
Quantum error correction meets continuous symmetries: fundamental trade-offs and case studies

> Zi-Wen Liu and **Sisi Zhou** (Perimeter Institute) (Caltech)

> > arXiv:2111.06355 & arXiv:2111.06360

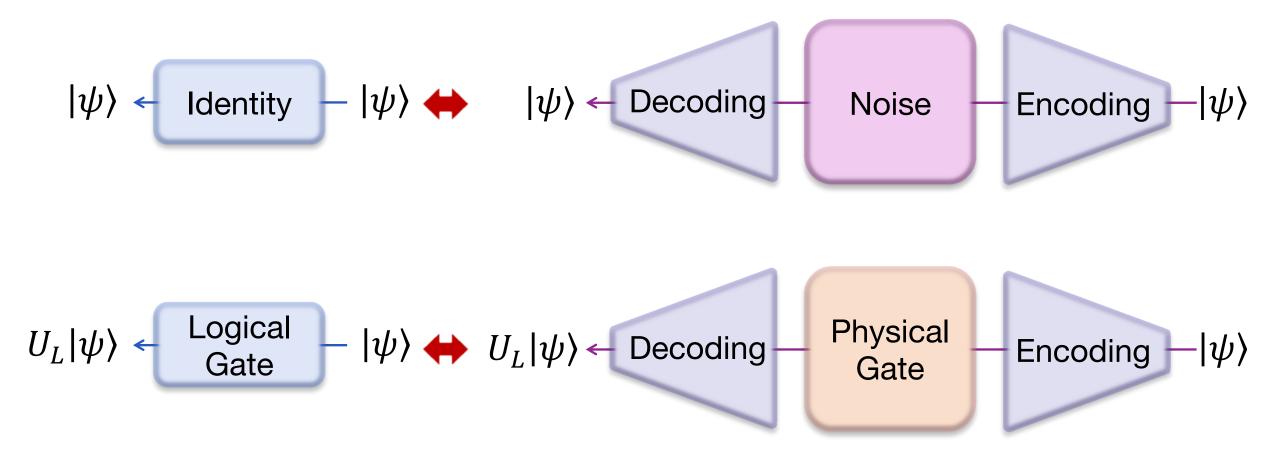
Beyond IID in Information Theory 10, 2022/09/30

Noise is one of the biggest enemies of quantum computers.



Quantum error correction protects quantum information from noise, where logical qubits are encoded in a large number of physical qubits.

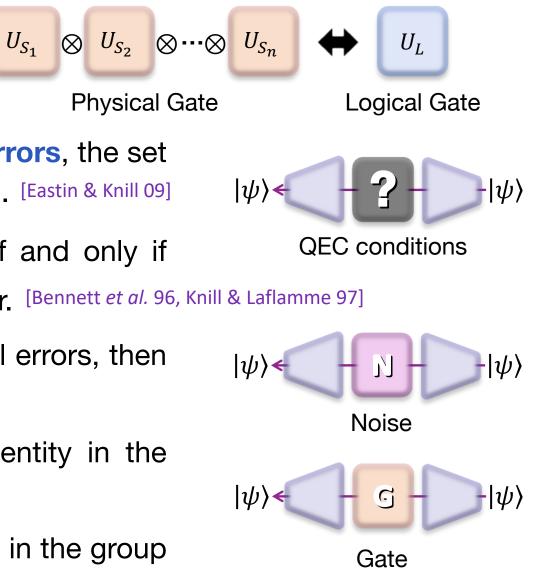
Quantum error correction (QEC):



Eastin-Knill Theorem

For any quantum code that corrects **local errors**, the set of **transversal logical gates** is not universal. [Eastin & Knill 09]

- A noise $\mathcal{N} = \sum_{i} K_{i}(\cdot) K_{i}^{\dagger}$ is correctable, if and only if QEC c $PK_{i}^{\dagger}K_{j}P \propto P$ where P is the code projector. [Bennett *et al.* 96, Knill & Laflamme 97]
- An error-correcting code corrects all local errors, then $PEP \propto P$ for local operators *E*.
- $\{e^{-iH\theta}\}$, for any local *H* acts as the identity in the code subspace.
- The connected component of the identity in the group of transversal logical gates acts as the identity.



Eastin-Knill Theorem

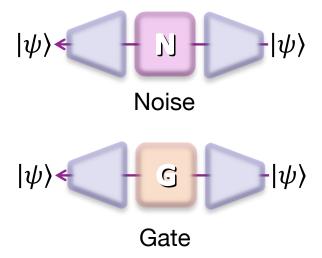
For any quantum code that corrects **local errors**, the set of transversal logical gates is not universal. [Eastin & Knill 09]

- A noise $\mathcal{N} = \sum_i K_i(\cdot) K_i^{\dagger}$ is correctable, if and only if $PK_i^{\dagger}K_iP \propto P$ where P is the code projector. [Bennett *et al.* 96, Knill & Laflamme 97]
- An error-correcting code corrects all local errors, then $PEP \propto P$ for local operators E.
- $\{e^{-iH\theta}\}$, for any local H acts as the identity in the code subspace.
- The connected component of the identity in the group • of transversal logical gates acts as the identity.

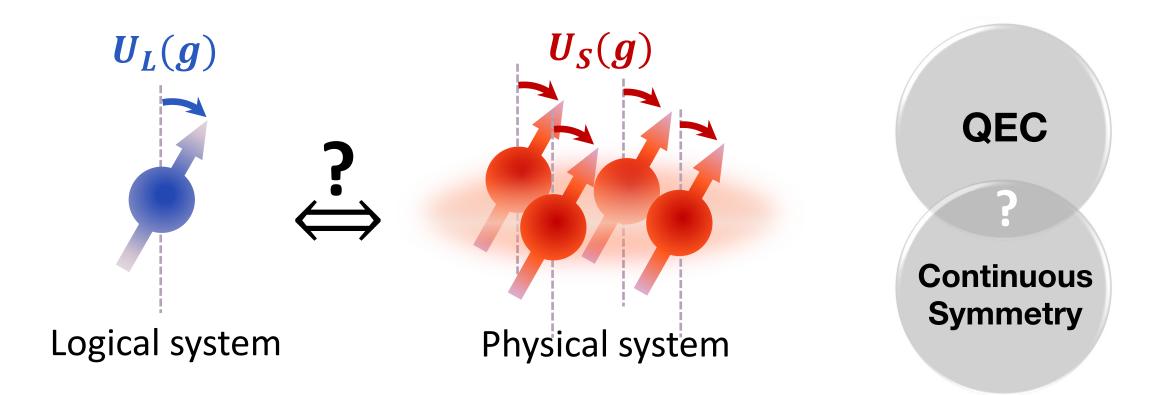
Physical Gate

 $e^{iH_{S_1}\theta} \otimes e^{iH_{S_2}\theta} \otimes \cdots \otimes e^{iH_{S_n}\theta}$

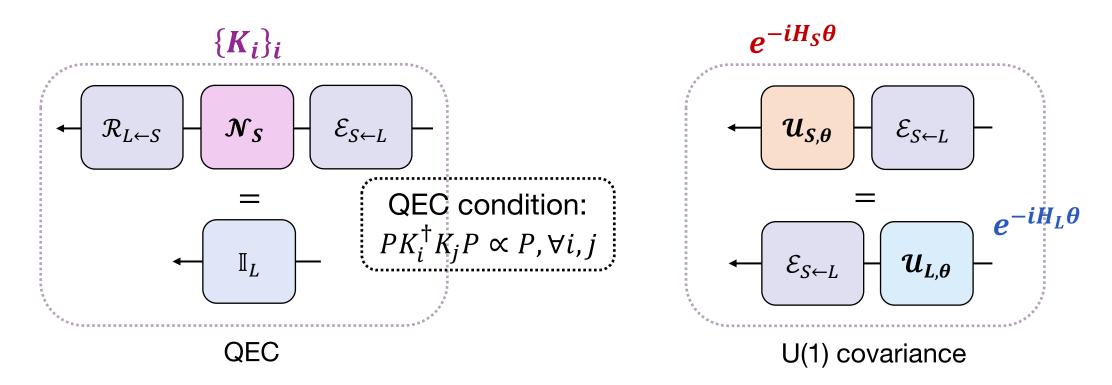
Logical Identity



Quantum error correction with symmetries

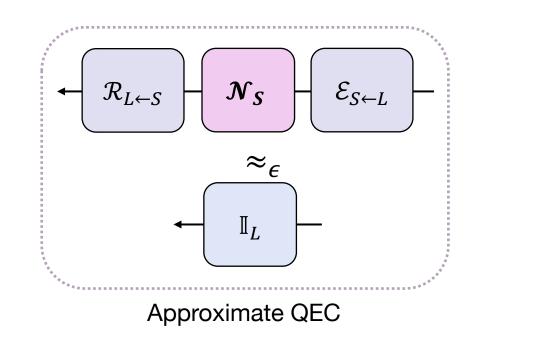


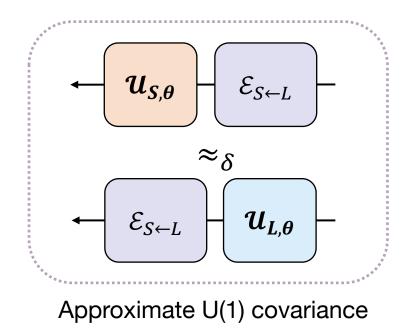
QEC vs. Continuous symmetries



When $H_S \in \text{span}\{K_i^{\dagger}K_j\}$, H_L acts as the identity. (the Hamiltonian-in-Kraus-Span (HKS) condition) Charge

Approximate QEC vs. Approximate symmetries





 ϵ : Purified distance (Minimize over \mathcal{R})

 ϵ : Distance measure between $\mathcal{R}_{L \leftarrow S} \circ \mathcal{N}_{S} \circ \mathcal{E}_{S \leftarrow L}$ and \mathbb{I}_{L}

 δ : Distance measure between $\mathcal{U}_{S,\theta} \circ \mathcal{E}_{S\leftarrow L}$ and $\mathcal{E}_{S\leftarrow L} \circ \mathcal{U}_{L,\theta}$

3 types of δ : **Global covariance** (Maximize over θ); Local covariance (Derivative w.r.t. θ); Charge conservation

Main results

• Various trade-off relations between QEC and covariance.

$$\delta \gtrsim \sqrt{\frac{\Delta H_L - 2\epsilon \Im(\mathcal{N}_S, H_S)}{\Delta H_S}}, \quad \epsilon + \delta \gtrsim \frac{\Delta H_L}{\sqrt{4\Im(\mathcal{N}_S, H_S)}}, \quad \dots$$

: Strengths of Hamiltonians. $\lambda_{\max}(H) - \lambda_{\min}(H)$. : Related to the HKS condition. : Regularized QFI of $\mathcal{N}_S \circ \mathcal{U}_{S,\theta}$

• Code examples that nearly attain the bounds.

Exactly Covariant Codes:

- Lower bounds on the QEC inaccuracy ϵ when $\delta = 0$.
- Connection to quantum metrology & quantum resource theory.

[Faist *et al.* PRX'20] [Woods & Alhambra, Quantum'20] [Kubica & Demkowicz-Dobrzański, PRL'20] [SZ *et al.* Quantum'21] [Yang *et al.* PRR'22]

Behavior of the trade-off relations

 δ

$$\mathcal{N}_{S,\theta} = \sum_{l=1}^{n} \frac{1}{n} \mathcal{N}_{S_{l},\theta}$$

 $e^{-iH_L\theta}$

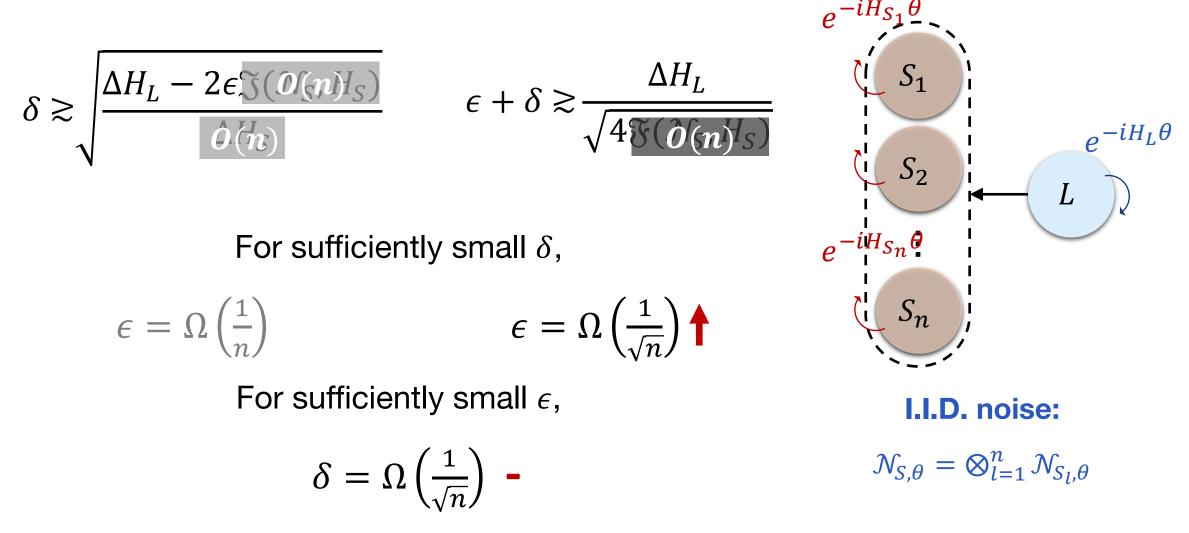
L

 $e^{-iH_{S_1}\theta}$

 $\delta = \Omega\left(\frac{1}{\sqrt{n}}\right)$ $\delta = \Omega\left(\frac{1}{n}\right)$

Noise acts on one subsystem chosen uniformly at random.

Behavior of the trade-off relations



Noise acts on every subsystem with a fixed probability.

Limitation on transversal logical gates

$$exp\left(\frac{-i2\pi H_{S_1}}{D}\right) \otimes \cdots exp\left(\frac{-i2\pi H_{S_n}}{D}\right) = exp\left(\frac{-i2\pi H_L}{D}\right) \Longrightarrow \begin{cases} \delta \cdot D = O(n), \\ D = O(n^{3/2}). \\ \delta = O(n^{3/2}). \end{cases}$$

Consider a QEC code that corrects local errors and admits a transversal implementation $V_S = \bigotimes_{l=1}^{n} e^{-i2\pi H_{S_l}/D}$ of the logical gate $V_L = e^{-i2\pi H_L/D}$, where *D* is an integer, and $H_{L,S}$ have integer eigenvalues and have constant scalings.

Limitation on transversal logical gates

$$\exp\left(\frac{-i2\pi H_{S_1}}{D}\right) \otimes \cdots \exp\left(\frac{-i2\pi H_{S_n}}{D}\right) = \exp\left(\frac{-i2\pi H_L}{D}\right)$$

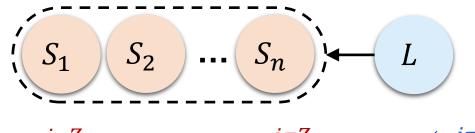
$$\exp\left(i\theta H_{S_1}\right) \otimes \cdots \exp\left(i\theta H_{S_1}\right) \approx_{\delta} \exp(i\theta H_L)$$
The $O(\log n)$ -th level Clifford hierarchy for stabilizer codes
$$\lim_{l \to \infty} C_{l} = \exp\left(\frac{-i2\pi H_{S_n}}{L}\right)$$

$$\lim_{l \to \infty} C_{l} = \exp\left(\frac{-i2\pi H_{S_n}}{L}\right)$$

$$\lim_{l \to \infty} C_{l} = \exp\left(\frac{-i2\pi H_{S_n}}{L}\right)$$

Consider a QEC code that corrects local errors and admits a transversal implementation $V_S = \bigotimes_{l=1}^{n} e^{-i2\pi H_{S_l}/D}$ of the logical gate $V_L = e^{-i2\pi H_L/D}$, where *D* is an integer, and $H_{L,S}$ have integer eigenvalues and have constant scalings.

Example: Quantum Reed-Muller code



$$\exp\left(\frac{i\pi Z_{S_1}}{2^{t-1}}\right) \qquad \cdots \quad \exp\left(\frac{i\pi Z_{S_n}}{2^{t-1}}\right) = \exp\left(\frac{-i\pi Z_L}{2^{t-1}}\right)$$

Consider the [[$n = 2^t - 1, 1, 3$]] quantum Reed-Muller code:

$$|\mathbf{c}_{0}\rangle = \frac{1}{\sqrt{2^{t}}} \Big(\sum_{\mathbf{x} \in \overline{\mathrm{RM}(1,t)}} |\mathbf{x}\rangle \Big), \quad |\mathbf{c}_{1}\rangle = \frac{1}{\sqrt{2^{t}}} \Big(\sum_{\mathbf{x} \in \overline{\mathrm{RM}(1,t)}} |\mathbf{1} + \mathbf{x}\rangle \Big).$$

The code is exactly error-correcting against single-qubit errors, and is approximately covariant:

$$\epsilon = 0, \qquad \delta \approx \frac{2}{\sqrt{n}} \gtrsim \frac{1}{\sqrt{n}}.$$

0	0	0	0	0	0	0	0	0	$ c_0\rangle$
v ₃	0	0	0	0	1	1	1	1	
\boldsymbol{v}_2	0	0	1	1	0	0	1	1	
\boldsymbol{v}_1	0	1	0	1	0	1	0	1	
$\boldsymbol{v}_2 + \boldsymbol{v}_3$	0	0	1	1	1	1	0	0	
$v_1 + v_3$	0	1	0	1	1	0	1	0	
$\boldsymbol{v}_1 + \boldsymbol{v}_2$	0	1	1	0	0	1	1	0	
$\boldsymbol{v}_1 + \boldsymbol{v}_2 + \boldsymbol{v}_3$	0	1	1	0	1	0	0	1	
1	1	1	1	1	1	1	1	1	
$1 + v_3$	1	1	1	1	0	0	0	0	
$1 + v_2$	1	1	0	0	1	1	0	0	
$1 + v_1$	1	0	1	0	1	0	1	0	
$1 + v_2 + v_3$	1	1	0	0	0	0	1	1	
$1 + v_1 + v_3$	1	0	1	0	0	1	0	1	
$1 + v_1 + v_2$	1	0	0	1	1	0	0	1	
$1 + v_1 + v_2 + v_3$	1	0	0	1	0	1	1	0	
						c	$_{1})$) =	$= X^{\otimes n} \mathfrak{c}_0 \rangle$
t =	3								-

Example: Modified thermodynamic code

[Brandao et al. PRL'19, Faist et al. PRX'21]

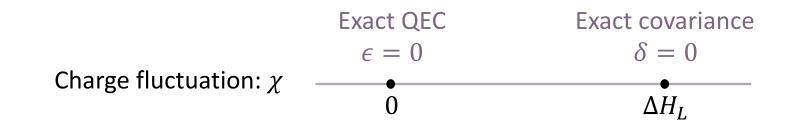
Consider a spin chain where the total charge $H_S = -\sum_{l=1}^n Z_{S_l}$.

 $|\mathfrak{c}_0^q\rangle \propto \sqrt{n}|m\rangle_{\mathrm{Dicke}} + \sqrt{qm}|-n\rangle_{\mathrm{Dicke}}, \quad |\mathfrak{c}_1^q\rangle \propto \sqrt{n}|-m\rangle_{\mathrm{Dicke}} + \sqrt{qm}|n\rangle_{\mathrm{Dicke}}.$

The code transits smoothly from an exactly covariant code to an exactly error-correcting code when q increases from 0 to 1:

$$\epsilon \approx \frac{(1-q)m}{2n} \gtrsim \frac{(1-4q)m}{2n}, \qquad \delta \approx \frac{\sqrt{4qm}}{\sqrt{n}} \gtrsim \frac{\sqrt{qm}}{\sqrt{n}}$$

Proof technique: Charge fluctuation



Charge fluctuation $\chi \coloneqq \langle c_0 | H_S | c_0 \rangle - \langle c_1 | H_S | c_1 \rangle$.

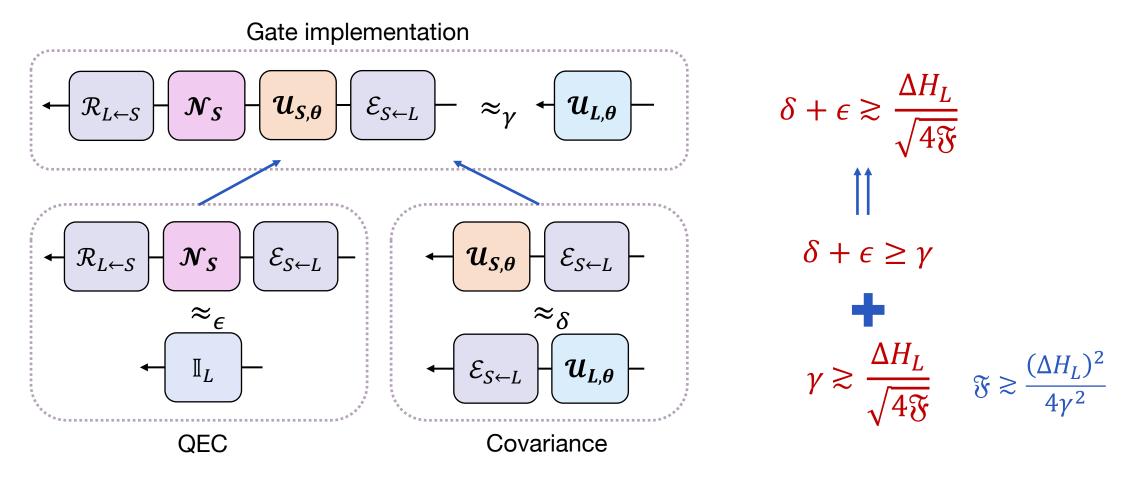
 $|c_0\rangle$ and $|c_1\rangle$: codewords corresponding to the largest and smallest eigenvalues of H_L .

When $\epsilon = 0$, $\chi = 0$ because $PH_SP \propto P$ from HKS and QEC conditions;

When $\delta = 0$, $\chi = \Delta H_L$ because $W^{\dagger}H_SW = H_L - \nu \mathbb{I}_L$ (W is the encoding isometry).

$$\delta \gtrsim \sqrt{\frac{\Delta H_L - 2\epsilon \mathfrak{J}}{\Delta H_S}} \iff \delta \gtrsim \sqrt{\frac{|\Delta H_L - \chi|}{\Delta H_S}} \quad \clubsuit \quad |\chi| \le 2\epsilon \mathfrak{J}$$

Proof technique: Gate implementation error



 γ : Distance measure between $\mathcal{R}_{L \leftarrow S} \circ \mathcal{N}_{S} \circ \mathcal{U}_{S,\theta} \circ \mathcal{E}_{S \leftarrow L}$ and $\mathcal{U}_{L,\theta}$

Summary and outlook

- Tradeoff relations between QEC and continuous symmetries.
- The relations are near-optimal in certain scenarios.
- Application in fault-tolerant quantum computation.
- Other tradeoff relations e.g., based on different symmetry measures;
 Detailed proof techniques based on quantum metrology, quantum resource theory, etc.
- Potential physical applications in quantum gravity (AdS/CFT, black hole evaporation), many-body physics, etc.

Thank you!