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Brief Summary

• Entanglement structures (ES)
▶ is a possible structure of quantum composite system in General

Probabilistic Theories (GPTs)
▶ is not uniquely determined even if local structures are equivalent to the

standard quantum theory.

• Pseudo standard entanglement structure (PSES) :
▶ available for small error verification of all maximally entangled states
▶ self-dual (= saturated situation of projectivity)

• Problem : Is there any possibility of PSES except for the standard
entanglement structure?

▶ infinitely many!
▶ even if the PSES attains perfect discrimination of non-orthogonal states

• Variety of ES with group symmetry
▶ global unitary symmetry determines ES as the standard entanglement

structure (SES)
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Introduction to GPTs and ESs

Preliminary:Definition of Quantum Theory

Model of standard quantum theory on composite system H
• State ρ (density matrix)

▶ ρ ∈ T+(H)
▶ Tr ρ = 1

• Measurement {Mi}i (POVM)
▶ Mi ∈ T+(H)

⇔ Tr ρMi ≥ 0 (∀ρ ∈ T+(H))
▶
∑

i Mi = I
• Probability to get a measurement outcome

▶ outcome i is measured with probability Tr ρMi

→ the model of quantum theory is defined by T+(H)
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Assumption and Notation� �
dim(H) = d

T (H) : set of Hermitian

matrices on H
T+(H) : set of positive

semi-definite matrices on H� �



Introduction to GPTs and ESs

Preliminary:Definition of the Model of Quantum Theory

Model of standard quantum theory on composite system H
• State ρ (density matrix)

▶ ρ ∈ T+(H)
▶ Tr ρ = 1

• Measurement {Mi}i (POVM)
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⇔ Tr ρMi ≥ 0 (∀ρ ∈ T+(H))
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• Probability to get a measurement outcome
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→ the model of quantum theory is defined by T+(H)
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→

Essential Points� �
• Tr ρMi ≥ 0

•
∑

iTr ρMi = 1

→ {Tr ρMi}i is
probability distribution� �



Introduction to GPTs and ESs

Preliminary:Definition of the Model of GPTs

Model of GPT with positive cone K(⊂ T (H))

• State ρ
▶ ρ ∈ K
▶ Tr ρ = 1

• Measurement {Mi}i
▶ Mi ∈ K∗

⇔ Tr ρMi ≥ 0 (∀ρ ∈ K)
▶
∑

i Mi = I
• Probability to get a measurement outcome

▶ outcome i is measured with probability Tr ρMi

→ a model of GPTs is defined by K
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→

Essential Points� �
• Tr ρMi ≥ 0

•
∑

iTr ρMi = 1

→ {Tr ρMi}i is
probability distribution� �

Remark� �
Actually, GPT deals with
more general models� �



Introduction to GPTs and ESs

Entanglement Structure

Entanglement Structure (ES)

• ES is a possible structure of the model of the (bipartite) composite
system of quantum subsystems in GPTs

• ES is not uniquely determined to the Standard Entanglement
Structure (SES) corresponding to T+(HA ⊗HB)

• T+(HA)⊗ T+(HB) ⊂ K ⊂ (T+(HA)⊗ T+(HB))
∗

▶ Local Tomography
▶ No-Signaling Principle
▶ Availability of separable states and separable effects

• it is important problem to derive the SES from ESs

• This talk shows the existence of “pseudo structures” of the SES.

H. Arai and M. Hayashi Pseudo standard entanglement structure arXiv:2203.07968 8 / 21

Notations� �
• T+(HA)⊗ T+(HB) := {

∑
i ρ

A
i ⊗ ρBi |

ρAi ∈ T+(H), ρBi ∈ T+(H)}
• K∗ := {y ∈ T (H) | Trxy ≥ 0 ∀x ∈ K}� �
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Our Setting and Results

Pseudo Structures

Pseudo Standard Entanglement Structures (PSESs)
(strict definition is explained later)

• undistinguishability
▶ availability of verification of any maximally entangled states with small

errors
▶ an experimental verification with errors does not guarantee that the

prepared state is exactly the same as the maximally entangled state

• self-duality (⇔ K = K∗)
▶ saturated situation of pre-duality (⇔ K ⊃ K∗)
▶ pre-duality ⇐ availability of projective measurements

• Assumption : Hereinafter, we assume dimHA = dimHB = d
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Our Setting and Results

Verification of maximally entangled states and
ϵ-undistinguishability

verifier

ρ

SES

This is the maximally entangled

state σ almost surely !

verifier

ρ′

K

This is the maximally entangled

state σ almost surely !

• In order to prepare a maximally entangled state σ
▶ we prepare a state ρ (ρ′)
▶ verify that ρ (ρ′) is equivalent to σ with error (probability) less than ϵ

• This task is successful if there exists such a state ρ, ρ′ in a model.
▶ If K has a state sufficiently near any maximally entangled state, K

success this task
▶ e.g. K ⊃ T+(HA ⊗HB) success this task
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Our Setting and Results

Verification of maximally entangled states and
ϵ-undistinguishability

Because the error probability of verification (hypothesis testing) is
estimated by trace norm ‖ · ‖1, we introduce the following value for K

• if K contains all maximally entangled states, then D(K) = 0

• ϵ-undistinguishability
▶ D(K) ≤ ϵ
▶ if K is ϵ-undistinguishable, we cannot deny the possibility of K by any

verification of maximally entangled states with larger errors than ϵ
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Maximally Entanglement

D(K) := max
σ∈ME

min
ρ∈K

‖σ − ρ‖1



Our Setting and Results

Relation between projectivity and pre-duality

• Projectivity
▶ For any (pure) effect e, there exists projective measurement {ei} such

that an element ei0 is equal to e, and the post-measurement state is
given as ei0 := ei0/Tr ei0 .

• K∗ is generated by (pure) effects

• there exists a correspondence ei 7→ ei0
• because ei0 is a state, ei0 ∈ K

→ Projectivity derives pre-duality, i.e., K ⊃ K∗

• With preserving projectivity, state space is restricted and effect space
is extended, then we obtain self-dual cone

▶ (actually, this is not trivial and we show this statement later)
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ρ ei
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state

post
measurement

state

{ei}
projective

measurement



Our Setting and Results

The definition of ϵ-PSESs
• ϵ-PSES is an ES with

▶ ϵ-undistinguishability
▶ self-duality

Definition (ϵ-Pseudo Standard Entanglement Structure)

If an ES K satisfiesϵ-undistinguishability and self-duality, we say that K is
an ϵ-PSES.

• SES is an example of ϵ-PSES for ϵ ≥ 0

• No other simple example is not found
▶ if K ⊋ SES, K is not self-dual
▶ if K ⊊ SES, K is not ϵ-undistinguishable for small ϵ.

Q. Is there any other example of ϵ-PSES for small ϵ ? → Yes!

Main Theorem

Given ϵ > 0, there exists exactly different infinite models of ϵ-PSES.
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Our Setting and Results

Self-dual modification

Main Theorem 1

Given any pre-dual cone K, there exists a self-dual cone K̃ such that
K ⊃ K̃ ⊃ K∗.

• Due to this theorem, self-duality is a natural consequence of
projectivity.

• For proofs, we applying Zorn’s Lemma for a certain ordered set
(→The proof is not constructive)

• Different pre-dual cone cannot always be modified to different
self-dual cone (This problem is solved by following theorem)

Main Theorem 2

Given an exact hierarchy of pre-dual cones K1 ⊋ · · · ⊋ Kn, there exist
exactly different self-dual cones K̃i such that Ki ⊃ K̃i ⊃ K∗

i .

• pre-dual cones K1 ⊋ · · · ⊋ Kn ⇒ exactly different self-dual cones K̃i
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Our Setting and Results

Idea of Proof of Theorem 1

• if K ⊊ K∗, there exists x ∈ K \ K∗

• K′∗ := K∗ + x, K′ = (K′∗)∗

• then, x belongs to both K′ and K′∗

→ K ⊊ K′ ⊂ K′∗ ⊊ K∗

• repeat such step infinitely many times (by Zron’s Lemma)
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Remark� �
K ⊃ K′ ⇔ K∗ ⊂ K′∗� �



Our Setting and Results

Idea of Proof of Theorem 2

• K1 ⊋ K2 ⊋ K∗
2 ⊋ K∗

1 → there exists x ∈ K1 \ K2

• K′∗
1 := K∗

1 + x → K′∗
1 6⊂ K2

→ K′∗
1 ⊂ K̃′

1 6⊂ K̃2 ( ∵ K̃2 ⊂ K2)

→ K̃′
1 6= K̃2
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Our Setting and Results

The existence of PSESs

• In order to apply main theorem 2, we construct an exact hierarchy of
pre-dual cones

• in this paper, we construct pre-dual cone Kr for a parameter r > 0

• Kr ⊋ Kr′ for r
′ < r ≤ r0 → {Kr} is an exact hierarchy

→ Main Theorem 2 implies that K̃r with each r is exactly different

• D(K̃r) ≤ D(K∗
r) ≤ ϵ for sufficiently small r.

→ K̃r is a ϵ-PSES.

Main Theorem 3

Given ϵ > 0, there exists exactly different infinite models of ϵ-PSES.

H. Arai and M. Hayashi Pseudo standard entanglement structure arXiv:2203.07968 18 / 21



Our Setting and Results

Other results
• an ϵ-PSES has extraordinary performance for perfect discrimination

▶ an ϵ-PSES has non-orthogonal perfectly distinguishable states
▶ In the SES, orthogonale ⇔ perfectly distinguishable

Main Theorem 4

For any ϵ > 0, there is an ϵ-PSES that contains a measurement
discriminating two non-orthogonal states perfectly.

• Group symmetric condition characterize the SES uniquely
▶ G-symmetric cone K: g(x) ∈ K for any x ∈ K and any g ∈ G.

GU(A;B) := {g ∈ GL(T (HA ⊗HB)) | g(·) := U †(·)U,
U is a unitary matrix on HA ⊗HB}.

Main theorem 5

For ES K, K is GU(A;B)-symmetric iff K = SES
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Summary and open problems

Summary and open problems

• There are many possibilities of ESs different from the SES.

• There exists infinite examples of ϵ-PSESs
▶ self-duality
▶ ϵ-undistinguishability

→ There exists another possibility of ESs that cannot be denied by
verification of maximally entangled state with errors

OPEN. Explicit construction of ϵ-PSESs

• Some ϵ-PSES can discriminate non-orthogonal states

→ Verification of maximally entanglement state with errors cannot deny
the possibility of an ES with such extraordinary performance for state
discrimination

OPEN. Any ϵ-PSES can discriminate non-orthogonal states except for the SES?

• GU(A;B)-symmetry uniquely determines the SES

OPEN. there exists LU(A;B)-symmetric ϵ-PSES except for the SES ?
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