Pseudo standard entanglement structure cannot be distinguished from standard entanglement structure

```
Hayato Arai^{1} and Masahito Hayashi^{2,1}
```

 1 Graduate School of Mathematics, Nagoya University

² Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology

Beyond IID 2022 arXiv:2203.07968

Brief Summary

- Entanglement structures (ES)
 - is a possible structure of quantum composite system in General Probabilistic Theories (GPTs)
 - is not uniquely determined even if local structures are equivalent to the standard quantum theory.
- Pseudo standard entanglement structure (PSES) :
 - available for small error verification of all maximally entangled states
 - self-dual (= saturated situation of projectivity)
- Problem : Is there any possibility of PSES except for the standard entanglement structure?
 - infinitely many!
 - even if the PSES attains perfect discrimination of non-orthogonal states
- Variety of ES with group symmetry
 - global unitary symmetry determines ES as the standard entanglement structure (SES)

1 Preliminary:Brief Introduction to GPTs and Entanglement Structures

2 Our Setting and Results

3 Summary and open problems

Outline

1 Preliminary:Brief Introduction to GPTs and Entanglement Structures

Our Setting and Results

3 Summary and open problems

Preliminary: Definition of Quantum Theory

Model of standard quantum theory on composite system $\ensuremath{\mathcal{H}}$

- State ρ (density matrix)
 - $\rho \in \mathcal{T}_+(\mathcal{H})$ $\operatorname{Tr} \rho = 1$
- Measurement $\{M_i\}_i$ (POVM)
 - $\stackrel{\bullet}{\Rightarrow} \frac{M_i \in \mathcal{T}_+(\mathcal{H})}{\operatorname{Tr} \rho M_i \ge 0} \ (\forall \rho \in \mathcal{T}_+(\mathcal{H}))$
 - $\sum_i M_i = I$

Assumption and Notation $\dim(\mathcal{H}) = d$ $\mathcal{T}(\mathcal{H}) : \text{set of Hermitian}$ matrices on \mathcal{H} $\mathcal{T}_{+}(\mathcal{H}) : \text{set of positive}$ semi-definite matrices on \mathcal{H}

- Probability to get a measurement outcome
 - outcome i is measured with probability $\operatorname{Tr} \rho M_i$

 \rightarrow the model of quantum theory is defined by $\mathcal{T}_+(\mathcal{H})$

Preliminary: Definition of the Model of Quantum Theory

Model of standard quantum theory on composite system $\ensuremath{\mathcal{H}}$

- State ρ (density matrix)
 - $\rho \in \mathcal{T}_+(\mathcal{H})$ $\operatorname{Tr} \rho = 1$
- Measurement $\{M_i\}_i$ (POVM)
 - $M_i \in \mathcal{T}_+(\mathcal{H})$ $\Leftrightarrow \operatorname{Tr} \rho M_i \ge 0 \ (\forall \rho \in \mathcal{T}_+(\mathcal{H}))$ $\succ \sum_i M_i = I$

Essential Points
•
$$\operatorname{Tr} \rho M_i \ge 0$$

• $\sum_i \operatorname{Tr} \rho M_i = 1$
 $\rightarrow \{\operatorname{Tr} \rho M_i\}_i \text{ is probability distribution}$

- Probability to get a measurement outcome
 - outcome i is measured with probability $\operatorname{Tr} \rho M_i$

 \rightarrow the model of quantum theory is defined by $\mathcal{T}_+(\mathcal{H})$

Preliminary: Definition of the Model of GPTs

Model of GPT with positive cone $\mathcal{K}(\subset \mathcal{T}(\mathcal{H}))$

- State ρ
 - $\rho \in \mathcal{K}$ $\operatorname{Tr} \rho = 1$
- Measurement $\{M_i\}_i$
 - $M_i \in \mathcal{K}^*$ $\Leftrightarrow \operatorname{Tr} \rho M_i \ge 0 \ (\forall \rho \in \mathcal{K})$ $\succ \sum_i M_i = I$

	Essential Points	
	• $\operatorname{Tr} \rho M_i \ge 0$	
Y	• $\sum_{i} \operatorname{Tr} \rho M_i = 1$	
,	$ ightarrow \{{ m Tr} ho M_i\}_i$ is	
	probability distribution	J
	\ \	

- Probability to get a measurement outcome
 - outcome i is measured with probability $\operatorname{Tr} \rho M_i$
- $\rightarrow\,$ a model of GPTs is defined by ${\cal K}$

Remark Actually, GPT deals with more general models

Entanglement Structure

Entanglement Structure (ES)

• ES is a possible structure of the model of the (bipartite) composite system of quantum subsystems in GPTs

Notations

• $\mathcal{T}_{+}(\mathcal{H}_{A}) \otimes \mathcal{T}_{+}(\mathcal{H}_{B}) := \{\sum_{i} \rho_{i}^{A} \otimes \rho_{i}^{B} \mid \rho_{i}^{A} \in \mathcal{T}_{+}(\mathcal{H}), \rho_{i}^{B} \in \mathcal{T}_{+}(\mathcal{H})\}$ • $\mathcal{K}^{*} := \{y \in \mathcal{T}(\mathcal{H}) \mid \operatorname{Tr} xy \geq 0 \ \forall x \in \mathcal{K}\}$

- ES is not uniquely determined to the Standard Entanglement Structure (SES) corresponding to $\mathcal{T}_+(\mathcal{H}_A\otimes\mathcal{H}_B)$
- $\mathcal{T}_+(\mathcal{H}_A)\otimes\mathcal{T}_+(\mathcal{H}_B)\subset\mathcal{K}\subset(\mathcal{T}_+(\mathcal{H}_A)\otimes\mathcal{T}_+(\mathcal{H}_B))^*$
 - Local Tomography
 - No-Signaling Principle
 - Availability of separable states and separable effects
- it is important problem to derive the SES from ESs
- This talk shows the existence of "pseudo structures" of the SES.

Outline

Preliminary:Brief Introduction to GPTs and Entanglement Structures

2 Our Setting and Results

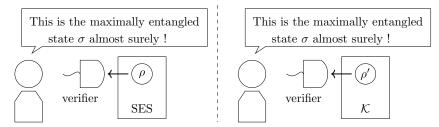
3 Summary and open problems

Pseudo Structures

Pseudo Standard Entanglement Structures (PSESs) (strict definition is explained later)

- undistinguishability
 - availability of verification of any maximally entangled states with small errors
 - an experimental verification with errors does not guarantee that the prepared state is exactly the same as the maximally entangled state
- self-duality ($\Leftrightarrow \mathcal{K} = \mathcal{K}^*$)
 - saturated situation of pre-duality ($\Leftrightarrow \mathcal{K} \supset \mathcal{K}^*$)
 - pre-duality \Leftarrow availability of projective measurements
- Assumption : Hereinafter, we assume $\dim \mathcal{H}_A = \dim \mathcal{H}_B = d$

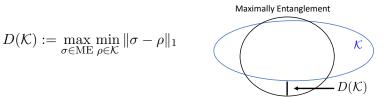
Verification of maximally entangled states and ϵ -undistinguishability



- In order to prepare a maximally entangled state σ
 - we prepare a state ρ (ρ')
 - \blacktriangleright verify that ρ (ρ') is equivalent to σ with error (probability) less than ϵ
- This task is successful if there exists such a state ρ, ρ' in a model.
 - \blacktriangleright If ${\cal K}$ has a state sufficiently near any maximally entangled state, ${\cal K}$ success this task
 - ▶ e.g. $\mathcal{K} \supset \mathcal{T}_+(\mathcal{H}_A \otimes \mathcal{H}_B)$ success this task

Verification of maximally entangled states and ϵ -undistinguishability

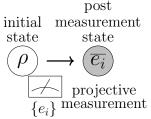
Because the error probability of verification (hypothesis testing) is estimated by trace norm $\|\cdot\|_1$, we introduce the following value for \mathcal{K}



- if $\mathcal K$ contains all maximally entangled states, then $D(\mathcal K)=0$
- *e*-undistinguishability
 - $D(\mathcal{K}) \leq \epsilon$
 - ► if *K* is *ϵ*-undistinguishable, we cannot deny the possibility of *K* by any verification of maximally entangled states with larger errors than *ϵ*

Relation between projectivity and pre-duality

- Projectivity
 - ► For any (pure) effect e, there exists projective measurement {e_i} such that an element e_{i0} is equal to e, and the post-measurement state is given as e_{i0} := e_{i0} / Tr e_{i0}.
- \mathcal{K}^* is generated by (pure) effects
- there exists a correspondence $e_i \mapsto \overline{e_{i_0}}$
- because $\overline{e_{i_0}}$ is a state, $\overline{e_{i_0}} \in \mathcal{K}$
- $\rightarrow\,$ Projectivity derives pre-duality, i.e., $\mathcal{K}\supset\mathcal{K}^*$



- With preserving projectivity, state space is restricted and effect space is extended, then we obtain self-dual cone
 - (actually, this is not trivial and we show this statement later)

The definition of $\epsilon\text{-}\mathsf{PSESs}$

- - ▶ *ϵ*-undistinguishability
 - self-duality

Definition (*e*-Pseudo Standard Entanglement Structure)

If an ES ${\cal K}$ satisfies ϵ -undistinguishability and self-duality, we say that ${\cal K}$ is an ϵ -PSES.

- SES is an example of $\epsilon\text{-PSES}$ for $\epsilon\geq 0$
- No other simple example is not found
 - if $\mathcal{K} \supseteq SES$, \mathcal{K} is not self-dual
 - if $\mathcal{K} \subsetneq \text{SES}$, \mathcal{K} is not ϵ -undistinguishable for small ϵ .
- Q. Is there any other example of ϵ -PSES for small ϵ ? \rightarrow Yes!

Main Theorem

Given $\epsilon > 0$, there exists exactly different infinite models of ϵ -PSES.

Self-dual modification

Main Theorem 1

Given any pre-dual cone \mathcal{K} , there exists a self-dual cone $\tilde{\mathcal{K}}$ such that $\mathcal{K} \supset \tilde{\mathcal{K}} \supset \mathcal{K}^*$.

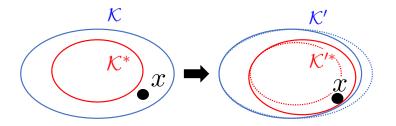
- Due to this theorem, self-duality is a natural consequence of projectivity.
- For proofs, we applying Zorn's Lemma for a certain ordered set (→The proof is not constructive)
- Different pre-dual cone cannot always be modified to different self-dual cone (This problem is solved by following theorem)

Main Theorem 2

Given an exact hierarchy of pre-dual cones $\mathcal{K}_1 \supseteq \cdots \supseteq \mathcal{K}_n$, there exist exactly different self-dual cones $\tilde{\mathcal{K}}_i$ such that $\mathcal{K}_i \supset \tilde{\mathcal{K}}_i \supset \mathcal{K}_i^*$.

• pre-dual cones $\mathcal{K}_1 \supsetneq \cdots \supsetneq \mathcal{K}_n \Rightarrow$ exactly different self-dual cones $\tilde{\mathcal{K}_i}$

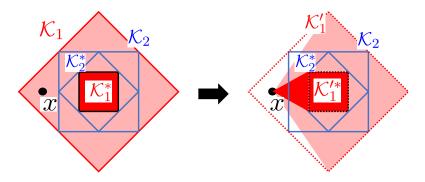
Idea of Proof of Theorem 1



 $\begin{array}{c} \mathsf{Remark} \\ \mathcal{K} \supset \mathcal{K}' \Leftrightarrow \mathcal{K}^* \subset \mathcal{K}'^* \end{array}$

- if $\mathcal{K} \subsetneq \mathcal{K}^*$, there exists $x \in \mathcal{K} \setminus \mathcal{K}^*$
- $\mathcal{K}'^* := \mathcal{K}^* + x$, $\mathcal{K}' = (\mathcal{K}'^*)^*$
- then, x belongs to both \mathcal{K}' and \mathcal{K}'^*
- $\rightarrow \ \mathcal{K} \subsetneq \mathcal{K}' \subset \mathcal{K}'^* \subsetneq \mathcal{K}^*$
 - repeat such step infinitely many times (by Zron's Lemma)

Idea of Proof of Theorem 2



- $\mathcal{K}_1 \supseteq \mathcal{K}_2 \supseteq \mathcal{K}_2^* \supseteq \mathcal{K}_1^* \to \text{there exists } x \in \mathcal{K}_1 \setminus \mathcal{K}_2$
- $\mathcal{K}_1^{\prime*} := \mathcal{K}_1^* + x \rightarrow \mathcal{K}_1^{\prime*} \not\subset \mathcal{K}_2$ $\rightarrow \mathcal{K}_1^{\prime*} \subset \tilde{\mathcal{K}}_1^{\prime} \not\subset \tilde{\mathcal{K}}_2 \ (\because \tilde{\mathcal{K}}_2 \subset \mathcal{K}_2)$ $\rightarrow \tilde{\mathcal{K}}_1^{\prime} \neq \tilde{\mathcal{K}}_2$

The existence of PSESs

- In order to apply main theorem 2, we construct an exact hierarchy of pre-dual cones
- in this paper, we construct pre-dual cone \mathcal{K}_r for a parameter r>0
- $\mathcal{K}_r \supseteq \mathcal{K}_{r'}$ for $r' < r \le r_0 \quad \rightarrow \quad {\{\mathcal{K}_r\}}$ is an exact hierarchy
- ightarrow Main Theorem 2 implies that $ilde{\mathcal{K}_r}$ with each r is exactly different
 - $D(\tilde{\mathcal{K}}_r) \leq D(\mathcal{K}_r^*) \leq \epsilon$ for sufficiently small r.
- $\rightarrow \tilde{\mathcal{K}}_r$ is a ϵ -PSES.

Main Theorem 3

Given $\epsilon > 0$, there exists exactly different infinite models of ϵ -PSES.

Other results

- an ϵ -PSES has extraordinary performance for perfect discrimination
 - an ϵ -PSES has non-orthogonal perfectly distinguishable states
 - ► In the SES, orthogonale ⇔ perfectly distinguishable

Main Theorem 4

For any $\epsilon > 0$, there is an ϵ -PSES that contains a measurement discriminating two non-orthogonal states perfectly.

- Group symmetric condition characterize the SES uniquely
 - G-symmetric cone \mathcal{K} : $g(x) \in \mathcal{K}$ for any $x \in \mathcal{K}$ and any $g \in G$.

$$\operatorname{GU}(A;B) := \{g \in \operatorname{GL}(\mathcal{T}(\mathcal{H}_A \otimes \mathcal{H}_B)) \mid g(\cdot) := U^{\dagger}(\cdot)U,$$

U is a unitary matrix on $\mathcal{H}_A \otimes \mathcal{H}_B$.

Main theorem 5

For ES \mathcal{K} , \mathcal{K} is $\mathrm{GU}(A; B)$ -symmetric iff $\mathcal{K} = \mathrm{SES}$

Outline

1 Preliminary: Brief Introduction to GPTs and Entanglement Structures

2 Our Setting and Results

3 Summary and open problems

Summary and open problems

- There are many possibilities of ESs different from the SES.
- There exists infinite examples of ϵ -PSESs
 - self-duality
 - *ϵ*-undistinguishability
- \rightarrow There exists another possibility of ESs that cannot be denied by verification of maximally entangled state with errors
 - OPEN. Explicit construction of *e*-PSESs
 - Some ϵ -PSES can discriminate non-orthogonal states
- \rightarrow Verification of maximally entanglement state with errors cannot deny the possibility of an ES with such extraordinary performance for state discrimination

OPEN. Any ϵ -PSES can discriminate non-orthogonal states except for the SES?

• $\mathrm{GU}(A;B)$ -symmetry uniquely determines the SES OPEN. there exists $\mathrm{LU}(A;B)$ -symmetric ϵ -PSES except for the SES ?