

Information reconciliation and symmetric CQ channel coding

Error probability for a good code C of rate R, blocklength n, and channel W :

$$
P_{\mathrm{err}} \approx 2^{-n E(W, R)} \text { for } n \rightarrow \infty
$$

For classical channels and rates below capacity:

$$
\begin{array}{ll}
E(W, R) \geq \max _{s \in[0,1]}\left(E_{0}(s, W)-s R\right) & \text { Fano, Gallager, } \ldots \\
E(W, R) \leq \sup _{s \geq 0}\left(E_{0}(s, W)-s R\right) & \text { Shannon, Gallager } \\
E_{0}(s, W)=\max _{P_{Z}} s \bar{I}_{1 / 1+s}^{\uparrow}(Z: B) &
\end{array}
$$

Error probability for a good code C of rate R, blocklength n, and channel W :

$$
P_{\mathrm{err}} \approx 2^{-n E(W, R)} \text { for } n \rightarrow \infty
$$

For classical-quantum channels and rates below capacity:

$$
\begin{array}{ll}
E(W, R) \geq \max _{s \in[0,1]}\left(E_{0}(s, W)-s R\right) & \begin{array}{l}
\text { Pure state channels: } \\
\text { Burnashev \& Holevo }
\end{array} \\
E(W, R) \leq \sup _{s \geq 0}\left(E_{0}(s, W)-s R\right) & \text { Dalai, Winter } \\
E_{0}(s, W)=\max _{P_{Z}} s \bar{I}_{1 / 1+s}^{\uparrow}(Z: B) &
\end{array}
$$

Error probability for a good code C of rate R, blocklength n, and channel W :

$$
P_{\mathrm{err}} \approx 2^{-n E(W, R)} \text { for } n \rightarrow \infty
$$

For classical-quantum channels and rates below capacity:

$$
E(W, R) \geq \max _{s \in[0,1]}\left(E_{0}(s, W)-s R\right)
$$

This talk: extend the achievability result to symmetric channels using duality

Specifically: convert a security exponent result from Hayashi 2015 to an information reconciliation error exponent, and from there to a channel coding result

Reduction from reconciliation to channel coding

Channel (n-fold iid)

Bipartite source

Information reconciliation

Channel coding

Reduction from reconciliation to channel coding

Channel

- Works for any channel
- Average error for coding \leq IR error
- Rate is $\log d-R_{I R}$
- Achieves capacity for symmetric W

Connection between privacy amplification and reconciliation

Bipartite source

Purified tripartite source

Tripartite uncertainty relation R2018

$$
P_{\text {guess }}\left(\hat{Z} \mid B^{n} \check{Z}\right)_{\Psi}=\max _{\sigma} F\left(\Psi_{\hat{X}_{E^{n}}} \pi_{\hat{X}} \otimes \sigma_{E^{n}}\right)^{2}
$$

\hat{Z}, \check{Z} : measure \hat{A}, \check{A} in standard basis
\hat{X} : measure \hat{A} in Fourier conjugate basis

Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log D\left(\Psi_{\hat{X} E^{n}}, \pi_{\hat{X}} \otimes \Psi_{E^{n}}\right) \geq \max _{\alpha \in[1,2]}(\alpha-1)\left(\tilde{H}_{\alpha}^{\downarrow}\left(X_{A} \mid E\right)_{\psi}-R_{P A}\right)
$$

Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log D\left(\Psi_{\hat{X} E^{n}}, \pi_{\hat{X}} \otimes \Psi_{E^{n}}\right) \geq \max _{\alpha \in[1,2]}(\alpha-1)\left(\tilde{H}_{\alpha}^{\downarrow}\left(X_{A} \mid E\right)_{\psi}-R_{P A}\right)
$$

LHS: Bound D by F and use uncertainty relation to obtain

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log P_{\mathrm{err}}\left(\hat{Z} \mid B^{n} \check{Z}\right)_{\Psi} \geq \lim _{n \rightarrow \infty} \frac{-1}{n} \log D\left(\Psi_{\hat{X} E^{n}}, \pi_{\hat{X}} \otimes \Psi_{E^{n}}\right)
$$

Security exponent of privacy amplification

Hayashi2015: Universal hashing for privacy amplification achieves:

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log D\left(\Psi_{\hat{X} E^{n}} \pi_{\hat{X}} \otimes \Psi_{E^{n}}\right) \geq \max _{\alpha \in[1,2]}(\alpha-1)\left(\tilde{H}_{\alpha}^{\downarrow}\left(X_{A} \mid E\right)_{\psi}-R_{P A}\right)
$$

RHS: Another uncertainty relation \& PA / IR rate relations:

$$
\begin{aligned}
\bar{H}_{1 / \alpha}^{\uparrow}\left(Z_{A} \mid B\right)_{\psi}+\tilde{H}_{\alpha}^{\downarrow}\left(X_{A} \mid E\right)_{\psi} & =\log d_{A} \quad R_{P A}=\log d_{A}-R_{I R} \\
\max _{\alpha \in[1,2]}(\alpha-1)\left(\tilde{H}_{\alpha}^{\downarrow}\left(X_{A} \mid E\right)_{\psi}-R_{P A}\right) & =\max _{\alpha \in[1,2]}(\alpha-1)\left(R_{I R}-\bar{H}_{1 / \alpha}^{\uparrow}\left(Z_{A} \mid B\right)_{\psi}\right) \\
& =\max _{\alpha \in[1 / 2,1]} \frac{1-\alpha}{\alpha}\left(R_{I R}-\bar{H}_{\alpha}^{\uparrow}\left(Z_{A} \mid B\right)_{\psi}\right)
\end{aligned}
$$

Error exponent of information reconciliation

We have the following achievability result:

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log P_{\mathrm{err}}\left(\hat{Z} \mid B^{n} \check{Z}\right)_{\Psi} \geq \max _{\alpha \in[1 / 2,1]} \frac{1-\alpha}{\alpha}\left(R_{I R}-\bar{H}_{\alpha}^{\dagger}\left(Z_{A} \mid B\right)_{\psi}\right)
$$

Compare with the converse bound from Cheng, Hanson, Datta, Hsieh 2021

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log P_{\operatorname{err}}\left(\hat{Z} \mid B^{n} \check{Z}\right)_{\Psi} \leq \sup _{\alpha \in[0,1]} \frac{1-\alpha}{\alpha}\left(R_{I R}-\bar{H}_{\alpha}^{\uparrow}\left(Z_{A} \mid B\right)_{\psi}\right)
$$

Error exponent of channel coding

Uniform P_{Z} is optimal in $\max \bar{I}_{\alpha}^{\dagger}\left(Z_{A}: B\right)_{\psi}$ for symmetric channels, meaning

$$
\max _{P_{Z}} \bar{I}_{\alpha}^{\uparrow}\left(Z_{A}: B\right)_{\psi}=\log d_{A}-\bar{H}_{\alpha}^{\uparrow}\left(Z_{A} \mid B\right)_{\psi}
$$

By the $\mathrm{IR} \rightarrow$ coding reduction, for which $R=\log d-R_{I R}$, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{-1}{n} \log P_{\mathrm{err}}(W) & \geq \max _{\alpha \in[1 / 2,1]} \frac{1-\alpha}{\alpha}\left(\bar{I}_{\alpha}^{\uparrow}\left(Z_{A}: B\right)_{\psi}-R\right) \\
& =\max _{s \in[0,1]} s\left(\bar{I}_{1 / 1+s}^{\uparrow}\left(Z_{A}: B\right)_{\psi}-R\right),
\end{aligned}
$$

which is what we wanted to prove.

Apply IR bounds to PA: sphere-packing

Cheng, Hanson, Datta, Hsieh 2021 give polynomial prefactors in their sphere-packing converse bound, which when applied to PA yields

$$
\begin{gathered}
-\frac{1}{n} \log P\left(\Psi_{\hat{X} C^{n}}^{\prime}, \pi_{\hat{X}} \otimes \Psi_{C^{n}}^{\prime}\right) \leq \frac{1}{2} E_{S P-P A}\left(R_{P A}\right)+\frac{1}{4}\left(1+\left|E_{S P-P A}^{\prime}\left(R_{P A}\right)\right|\right) \frac{\log n}{n}+\frac{K}{n} . \\
E_{S P-P A}\left(R_{P A}\right)=\sup _{\alpha \geq 1}(\alpha-1)\left(\tilde{H}_{\alpha}^{\downarrow}\left(X_{A} \mid C\right)_{\psi^{\prime}}-R_{P A}\right)
\end{gathered}
$$

This sharpens a recent result by Li, Yao, and Hayashi 2022 (but only for linear extractors)

Apply IR bounds to PA: strong converse

Cheng, Hanson, Datta, Hsieh 2021 also find the strong converse exponent for IR

$$
E_{S C-I R}\left(R_{I R}\right)=\sup _{\alpha \geq 1} \frac{1-\alpha}{\alpha}\left(R_{I R}-\tilde{H}_{\alpha}^{\dagger}\left(Z_{A} \mid B\right)_{\psi}\right)
$$

By the uncertainty relation, $\max F\left(\Psi_{\hat{X} E^{n}}, \pi_{\hat{X}} \otimes \sigma_{E^{n}}\right)^{2}$ will have the same exponent

Now use yet another Renyi duality $\tilde{H}_{\alpha}^{\uparrow}\left(Z_{A} \mid B\right)_{\psi}+\tilde{H}_{\alpha /(2 \alpha-1)}^{\uparrow}\left(X_{A} \mid E\right)_{\psi}=\log d_{A}$ to get

$$
\lim _{n \rightarrow \infty} \frac{-1}{n} \log \max _{\sigma} F\left(\Psi_{\hat{X} E^{n}}, \pi_{\hat{X}} \otimes \sigma_{E^{n}}\right)^{2}=\sup _{\alpha \in[1 / 2,1]} \frac{1-\alpha}{\alpha}\left(R_{P A}-\tilde{H}_{\alpha}^{\uparrow}\left(X_{A} \mid E\right)_{\psi}\right)
$$

This matches a recent result by Li and Yao 2022 (again, just for linear extractors)

Open questions

Can this duality be applied directly to channels?
Do we always have to use linear functions?

