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A long-standing problem in quantum Shannon theory is the clas-

sical capacity of bosonic Gaussian channels of various kinds.

Hypothesis of Gaussian Maximizers (HGM) states that the full

capacity of such channels is attained on Gaussian encodings.

A breakthrough was made in [Giovannetti-AH-GarciaPatron’14],

[Giovannetti-AH-Mari’15], where HGM was proved for important

class of multimode gauge co- or contra-variant Gaussian chan-

nels. In [AH’16] the solution was extended to broader class of

channels satisfying threshold condition, ensuring that the upper

bound for the capacity as a difference between the maximum

and the minimum output entropies is attainable.



At the same time, HGM remains open for large variety of Gaus-

sian channels lying beyond the scope of the threshold condition.

Here we outline a novel approach [AH’22] (Arxiv:2204.10626;

Arxiv:2206.02133) to such problems based on principles of con-

vex programming, and illustrate it on the characteristic case of

approximate position measurement with the energy constraint,

underlying noisy Gaussian homodyning in quantum optics. Re-

markably, for this model, as well as for Gaussian heterodyning,

the method reduces the solution of the optimization problem to

new generalizations of the celebrated log-Sobolev inequality.

We believe that these two basic models reveal a path to a general

solution of Hypothesis of Gaussian Maximizers.



Let S be the convex set of all density operators in a separable
Hilbert space H of the quantum system, X and Y are standard
measurable spaces. Measurement channel:

M : ρ→ pρ(y) = Tr ρm(y), ρ ∈ S,

where m(y) is a uniformly bounded positive-operator-valued func-
tion, such that

∫
m(y)µ(dy) = I (identity operator on H, µ a

measure). Encoding E = {π(dx), ρ(x)} is a probability measure
π(dx) with a measurable family of states ρ(x), x ∈ X .

Let H be a Hamiltonian on H , E > 0. The energy-constrained
classical capacity of the measurement channel M is

C(M,H,E) = sup
E:Trρ̄EH≤E

I(E,M), (1)

where I(E,M) is the mutual information between x and y, and
ρ̄E =

∫
ρ(x)π(dx) is the average state of the encoding.



Introducing the well defined output differential entropy

hM(ρ) = −
∫
pρ(y) ln pρ(y)µ(dy),

we have

I(E,M) = hM(ρ̄E)−
∫
hM(ρ(x))π(dx);

C(M, H,E) = sup
ρ:TrρH≤E

[hM(ρ)− eM(ρ)] (2)

≤ sup
ρ:TrρH≤E

hM(ρ)− inf
ρ
hM(ρ), (3)

where we introduced an analog of the convex closure of the

output differential entropy for quantum channel

eM(ρ) = inf
E:ρ̄E=ρ

∫
hM(ρ(x))π(dx). (4)



There are important cases where (3) turns into equality thus giv-

ing the value of the capacity. This happens when the maximizer

of the first term in (2) can be represented as a mixture of (pure)

states minimizing hM(ρ). In particular, all the instances where

the Hypothesis of Gaussian Maximizer was proved for Gaussian

quantum channels so far refer to that case.

In the present talk we propose a method allowing to prove this

hypothesis for the first time where this condition is violated,

the inequality in (3) is strict and hence becomes useless. The

method relies upon computation of the quantity eM(ρ) given

by (4). Then we illustrate the method on the basic cases of

Gaussian noisy homo- and hetero-dyning.



Our method of computation of the quantity eM(ρ) is based on
similarity of the optimization problem in the right side of (4) and
general quantum Bayes estimation problem.

Any encoding E = {π(dx), ρ(x)} is equivalent to probability distri-
bution π(dρ) on the set of quantum states S. Another equivalent

description of E is given by the positive operator-valued measure
Π(dρ) = ρπ(dρ) with values in S. The average state is

ρ̄E =
∫
S
ρπ(dρ) = Π(S),

and the minimized functional

F (E) =
∫
S
h (pρ)π(dρ) =

∫
S

Tr K(ρ)Π(dρ),

where

K(ρ) = −
∫
m(y) ln pρ(y)µ(dy).



By fixing an average state ρ, we arrive at optimization problem∫
S

TrK(ρ)Π(dρ) −→ min

Π(dρ) ≥ 0

Π(S) = ρ,

which is formally similar to one arising in the general quantum

Bayes problem [AH’72]. The minimized functional is affine in

E = {Π(dρ)} and the constraints are convex, so it is a convex

programming problem. Under certain regularity assumption the

problem was investigated in [AH’76], where the following nec-

essary and sufficient conditions for optimality of an ensemble

E0 = {Π0(dρ)} were given, which we reproduce here formally :



By introducing K(ρ) = −
∫
m(y) ln pρ(y)µ(dy), the optimality con-

dition for encoding E = {π0(dx), ρ0(x)} can be written as:

There exists selfadjoint operator Λ0 such that

(i) Λ0 ≤ K(ρ) for ρ ∈ S;

(ii) [K(ρ0(x))− Λ0] ρ0(x) = 0 (mod π0).

By integrating (ii), the equation for determination of Λ0 is∫
S
K(ρ0(x))ρ0(x)π0(dx) = Λ0ρ. (5)



Passing to bosonic Gaussian systems, we denote ρα centered
Gaussian state of canonical commutation relations with the co-
variance matrix α, by S(α) the set of all states ρ with the fixed
matrix of second moments α, and C(M ;α) ≡ supE:ρ̄E∈S(α) I(E,M).
The following theorem was proved in [AH’21]:

Theorem. Let M be a general Gaussian measurement channel.
The optimizing density operator ρ in (3) is a (centered) Gaussian
density operator ρα :

C(M ;α) = hM(ρα)− eM(ρα),

and hence for a quadratic bosonic Hamiltonian H = RεRt

C(M,H,E) = max
α:Trα ε≤E

C(M ;α) = max
α:Trα ε≤E

[hM(ρα)− eM(ρα)] .

Here R is the collection of canonical variables q, p’s, ε is real
positive definite energy matrix.



The approximate (unsharp) measurement of position q in one

mode R = (q, p) (a mathematical model for noisy homodyning)

is given by POVM M(dy) = m(y)dy, where

m(y) =
1

√
2πβ

exp

[
−(q − y)2

2β

]
≡ gβ(q − y),

where β > 0 is the power of the Gaussian noise.

The problem is to compute eM(ρα) and hence the classical ca-

pacity C(M,H,E) for the oscillator Hamiltonian H = 1
2

(
q2 + p2

)
.

In this case one can restrict to Gaussian states ρα with the di-

agonal covariance matrix

α =

[
αq 0
0 αp

]
.



Theorem. The maximum communication rate

C(M ;α) =
1

2
ln
αq + β
1

4αp
+ β

.

is attained on the Gaussian encoding {π0(dx), ρ0(x)} where

ρ0(x) = |x〉δ 〈x| are the squeezed states, |x〉δ = e−ipx |0〉δ , with

δ = 1/(4αp),

δ 〈0| q2 |0〉δ = δ, Re δ 〈0| qp |0〉δ = 0, δ 〈0| p2 |0〉δ =
1

4δ
.

The distribution π0(dx) is centered Gaussian gγ(x)dx with the

variance γ = αq − 1
4αp

.

Thus the information is encoded solely into the displacement x

of the position q leaving the momentum p ignored.



The constrained classical capacity is

C(M,H,E) =

max
αq+αq≤2E

1

2
[ln (αq + β)− ln (1/ (4αp) + β)] (6)

whence

C(M,H,E) = ln


√

1 + 8Eβ + 4β2 − 1

2β

 .



Sketch of proof of Theorem:

Integrating over π0(dx), and taking into account that∫
|x〉δ 〈x|π0(dx) = ρα,

after a lengthly computation we get∫
K(ρ0(x))ρ0(x)π0(dx) =

[
ln
√

2π (β + δ) +
β + 2δ

2 (β + δ)
−

2δ2p2

(β + δ)

]
ρα.

Comparing with (5), we obtain

Λ0 =

[
ln
√

2π (β + δ) +
β + 2δ

2 (β + δ)

]
I −

2δ2

(β + δ)
p2.

This is Hermitian operator satisfying the condition (ii).



Checking the condition

(i) 〈ψ|Λ0|ψ〉 ≤ 〈ψ|K(ρ)|ψ〉

requires a generalization of the logarithmic Sobolev inequality.

Let f(x) = |ψ(x)|2 be a smooth probability density on R. Then

the inequality reduces to:∫
[gβ(y) ∗ f(y)] ln[gβ(y) ∗ f(y)]dy + ln

√
2πe (β + δ) +

δ

2 (β + δ)

≤
2δ2

(β + δ)

∫
|ψ′(x)|2 dx (7)

for β, δ ≥ 0. For β = 0 this is equivalent to the version of the

log-Sobolev inequality in [Lieb-Loss’01]. That can be used as

starting point for the proof of (7), see [AH’22] Arxiv:2204.10626.



Noisy heterodyning

Next we summarize results from [AH’21], [AH-Kuznetsova’21],

[AH-Filippov’22] (Arxiv:2206.02133) concerning the unsharp joint

position-momentum measurement (with the noisy optical het-

erodyning as the physical prototype). This is described by the

POVM

M(dxdy) = D(x, y)ρβD(x, y)∗
dxdy

2π
,

where D(x, y) = exp i (yq − xp) , x, y ∈ R, are unitary position-

momentum displacement operators, and ρβ is centered Gaussian

density operator with the covariance matrix

β =

[
βq 0
0 βp

]
; βqβp ≥

1

4
.



Here βq (βp) are the noise power in position (momentum) quadra-

tures. We denote

m(x, y) =
1

2π
D(x, y)ρβD(x, y)∗.

Let ρα be a centered Gaussian density operator with the diagonal

covariance matrix.

The problem is to compute eM(ρα) and hence the capacitles

C(M,α), C(M,H,E) for the oscillator Hamiltonian H = 1
2

(
q2 + p2

)
.



Theorem. The optimal encoding is Gaussian with parameters:

Table 1

range L: 1
2

√
βq
βp
< 1

4αp
C: 1

4αp
≤ 1

2

√
βq
βp
≤ αq R: αq < 1

2

√
βq
βp

δopt 1/ (4αp) 1
2

√
βq
βp

αq

eM(ρα)− c 1
2 ln

[(
1

4αp
+ βq

)
ln
(√
βqβp + 1/2

)
1
2 ln

[(
1

4αq
+ βp

)
× (αp + βp)] × (αq + βq)]

C(M ;α) 1
2 ln

αq+βq
1

4αp
+βq

1
2 ln (αq+βq)(αp+βp)(√

βqβp+1/2
)2 1

2 ln
αp+βp
1

4αq
+βp



Here the column C corresponds to the case where the thresh-

old condition holds, implying eM(ρα) = minρ hM(ρ). Then the

full validity of the HGM in the multimode situation was estab-

lished in [AH-Kuznetsova’21]. In the cases of mutually symmet-

ric columns L and R the problem was solved recently in [AH-

Filippov’22].

Maximizing C(M ;α) over αq, αp which satisfy the energy con-

straint αq + αp = 2E, we obtain C(M,H,E) depending on the

signal energy E and the measurement noise βq, βp :



Table 2: C(M,H,E)
L: [AH-Filippov’22] C: [AH-Kuznetsova’21] R: [AH-Filippov’22]
βq ≤ βp;E < E (βp, βq) E ≥ E (βp, βq) ∨ E (βq, βp) βp ≤ βq;E < E (βq, βp)

ln

√1+8Eβq+4β2
q−1

2βq

 ln
(
E+(βq+βp)/2√

βqβp+1/2

)
ln

√1+8Eβp+4β2
p−1

2βp


where we introduced the energy threshold function

E (β1, β2) =
1

2

(
β1 − β2 +

√
β1

β2

)
.



The new log-Sobolev type inequality appears as condition (i):∫
〈ψ|m(x, y) |ψ〉 ln 〈ψ|m(x, y) |ψ〉 dxdy

+ ln 2π
√

(βq + δ) (βp + 1/4δ) +
βq + 2δ

2 (βq + δ)
+

βp

2 (βp + 1/4δ)

≤
4δ2βp − βq

2 (βq + δ) (βp + 1/4δ)

∫
|ψ′(x)|2 dx. (8)

A proof was found by Sergey Filippov [AH-Filippov’22]. For

δ = 1
2

√
βq
βp

the right-hand side vanishes and the inequality turns

into a generalization of the Wehrl inequality [AH’16]

min
‖ψ‖=1

hM(|ψ〉 〈ψ|) = ln 2πe
(√
βqβp + 1/2

)
.



Notably, both the proof of the original Wehrl inequality and the

log-Sobolev inequality given by Lieb and Loss rely upon the sharp

version of Young’s inequality for convolution (with different func-

tions). When δ > 1
2

√
βq
βp

(case L), the inequality (8) represents

a new type of logarithmic Sobolev inequality which relates the

generalized Wehrl entropy hM(|ψ〉〈ψ|) with the wavefunction gra-

dient.

* * * * *


